
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and 
Dissertations 

1-1-2000 

Extrusion texturization of extruded-expelled soybean flours Extrusion texturization of extruded-expelled soybean flours 

Troy Willis Crowe 
Iowa State University 

Follow this and additional works at: https://lib.dr.iastate.edu/rtd 

Recommended Citation Recommended Citation 
Crowe, Troy Willis, "Extrusion texturization of extruded-expelled soybean flours" (2000). Retrospective 
Theses and Dissertations. 21150. 
https://lib.dr.iastate.edu/rtd/21150 

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and 
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses 
and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, 
please contact digirep@iastate.edu. 

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/rtd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F21150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/21150?utm_source=lib.dr.iastate.edu%2Frtd%2F21150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Extrusion texturization of extruded-expelled 

soybean flours 

, by 

Troy Willis Crowe 

A thesis. submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Major: Food Science and Technology 

Major Professor: 'Lawrence A. Johnson 

Iowa State University 

Ames, Iowa 

2000 



www.manaraa.com

ii 

Graduate College 
Iowa State University 

This is to certify that the Master's thesis of 

Troy Willis Crowe 

has met the thesis requirements of Iowa State University 

Signatures have been redacted for privacy 



www.manaraa.com

iii 

TABLE OF CONTENTS 

. ABSTRACT lV 

CHAPTER 1. GENERAL INTRODUCTION 1 
Introduction 1 
Thesis Organization 1 

CHAPTER 2. LITERATURE REVIEW 3 
Extrusion 3 
Present Study 17 

CHAPTER 3. CHARACTERIZATION OF EXTRUDER-EXPELLED 
PARTIALLY DEFATTED SOY FLOURS 25 
Abstract 25 
Introduction 26 
Experimental Procedures 2 7 
Results and Discussion 29 
References 3 3 

CHAPTER 4. TWIN-SCREW EXTRUSION TEXTURIZTION OF PARTIALLY 
DEFATTED SOYBEAN FLOURS 43 
Abstract 43 
Introduction 44 
Experimental Procedures 45 
Results and Discussion . 50 
References 5 5 

CHAPTER 5. GENERAL CONCLUSIONS 68 

REFERENCES CITED 70 



www.manaraa.com

iv 

ABSTRACT 

There has been a nationwide growth in small-scale extrusion-expelling (E-E) 

facilities. In order to compete in a highly competitive market, these E-E operations must 

look for ways to add value to the resulting products (oil and meal (flour)). One potential 

use for E-E produced partially defatted soy flour (PDSF) is in the production of 

texturized soy proteins (TSP). The objectives of this study were to 1) produce and 

characterize PDSF with a wide range of residual oil (RO) contents and protein 

dispersability indexes (PDI) using both whole and dehulled soybeans, and 2) determine 

the influence of RO and PDI on the texturization of PDSF via twin-screw extrusion. RO 

and PDI ranges in PDSF were 4.73-12.65% and 12.45-69.10, respectively. E-E 

conditions significantly influenced enzyme (lipase, lipoxygenase (1-3), and trypsin 

inhibitor) activities, and protein solubility curves of PDSF. For objective 2, ten PDSF 

were texturized using a Leistritz-18 (Leistritz Corp., Allendale, NJ) twin-screw extruder. 

Extrusion parameters for texturization were optimized using the median (RO and PDI) 

PDSF. The influence of RO and PDI on texturization was analyzed using response 

surface methodology with texture profile analysis (TP A), water holding capacity (WHC) 

and bulk density (BD) as dependent variables and PDI and RO as independent variables. 

A TSP-extended ground beef system was evaluated by TP A and a trained sensory panel. 

In general, lower RO and higher PDI flours exhibited better texturization and extrudate 

qualities. However, textural, functional and sensory properties of all TSP from E-E 

produced PDSF were comparable to commercially produced TSP. 
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CHAPTER 1. GENERALINTRODUCTION 

Introduction 

The number of extrusion-expelling plants, otherwise known as "mini-milling" 

operations, has been increasing in number over the past several years. These mills utilize 

extrusion technology to increase the effectiveness of the screw press that expels the oil. In 

order to compete with larger operations, mini-mills must develop technologies to add 

value to the resulting products ( oil and meal). Currently the partially defatted soybean 

flour produced from these operations is not used extensively in food applications due to its 

novel nature, lack of familiarity with its functional characteristics, and the lack of research 

capital in smaller extrus1on-expeller operations. One potential use for partially defatted 

soybean flour is to produce texturized soy proteins. Parameters necessary for extrusion-

texturization of partially defatted soy flours and the influence of the novel properties of 

these flours on texturization are currently unknown. Most believe that extruded-expelled 

soybean flour will perform differently, and probably more poorly, than will hexane-

extracted flours when used in food systems due to changes in protein functionality caused 

by extrusion processing and the presence of additional fat. 

Thesis Organization 

This thesis includes a General Introduction, which consists of an introduction to 

the study and a thesis organization section. This chapter is followed by a Literature 

Review encompassing topics related to extrusion, background and methodology of the 
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study. Two manuscripts (Chapters 3 and 4) to be submitted for publication in the Journal 

of the American Oil Chemists' Society are included in the thesis. These chapters include 

an introduction, followed by materials and methods, results and discussion, and :figures 

and tables. The General Conclusions for the entire study are included in Chapter 5. 

References cited in thesis Chapters 1, 2 and 5 are included in the References section at the 

end of the thesis. References cited in the manuscript chapters (Chapters 3 and 4) are 

included at the ends of each of those sections. 
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CHAPTER 2. LITERATURE REVIEW 

Extrusion 

General Principles 

Extruders are essentially pumps which use a rotating screw or screws to force 

material to flow through a die (Seib, 1976). Extruders can be classified as being of either 

single- or twin-screw design. The actions of both extruder types are affected by the 

configurations of the screws and their rotational speeds, the back-pressure requirements of 

the dies, and the characteristics of the material being extruded (Harper, 1986). · 

An extruder consists of a flighted Archimedean screw that rotates in a tightly 

fitting barrel. The screw serves three functions: (1) accepting and conveying the feed, (2) 

compressing and working the food material, and (3) uniformly working and mixing the 

extrudate. (Harper, 1979). 

The extruder screw ( or screws) is basically a shaft, or root, around which a helical 

flight is wrapped. The flights may vary in height, width and orientation to the shaft. The 

channel is the open area between the flights and the barrel wall surrounding the screw. A 

typical section of an extruder screw is shown in Figure 2-1. 

The diameter of the screw (D) is the inside diameter of the barrel, and the flight 

height (H) is the distance from the root of the screw to the barrel. The helix angle of the 

screw (0) is the angle that the helical flight makes with the perpindicular to the shaft axis. _ 

The flight clearance is <>, the flight thickness in the axial direction is b, the flight thickness 
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flight is e, the axial distance between flights is B, and the distance between flights 

perpendicular to the flights is W. 

The feed material entering the screw is compacted, or in the case of a twin-screw 

system, kneaded and worked into a molten, plasticized, dough-like material. Screw filling 

is controlled by internal restrictions or compressions along the screw in a single-screw 

extruder, and is controlled primarily by feed rate, screw speed and reverse screw elements 

in a twin-screw system (Harper, 1992). 

Figure 2-1. Geometry of an extrusion screw metering section (Harper, 1979) 

As the material progresses toward the die, both temperature and pressure increase 

as a result of the relatively shallow screw flights, reduced 8, or increased restriction or 

interruption of the channel area. In a single-screw extruder, shallow flights increase shear 

. in the screw, increase pressure capability, and improve mixing; but, reduce extruder output 

at a fixed screw speed. In addition, heat sensitive materials are often damaged in shallow-

flighted screws. In a twin-screw extruder, kneading lobes, reverse screw elements and 



www.manaraa.com

5 

external heating sources ( e.g., steam, electric, etc.) are mainly responsible for increased 

shear and energy input (Harper, 1992). 

The barrel length (L) and diameter (D), and the LID ratio are important extruder 

design specifications. These variables impact both surface area for heating or cooling, and 

residence time. Temperature control systems are often added to extruders to control the 

temperature of specific barrel sections. 

The extruder die uses geometric openings or holes to mold and/or shape feed 

material as it emerges from the extruder. The sudden pressure drop as the product is 

forced through the die causes expansion of the exttudate. Entrapped water vaporizes or 

"flashes off'' because the extrudate temperature is often higher than the normal boiling 

point of water (Kinsella, 1978). Assuming that the loss of moisture is small compared to 

the mass flow rate of the material, the quantity of moisture flashed can be estimated by a 

heat balance around the discharge of the extruder assuming an adiabatic process as: 

M2 = (M111, - Cp (T1 -T2))/ 11, 

where Cp = heat capacity, M = moisture content (wet basis), and 11, = latent heat of 

vaporization at ambient pressure. Subscripts 1 and 2 denote before the die and after the 

die, respectively (Harper, 1979). 

Modeling the flow of extruded products is extremely important in determining 

extrusion parameters. However, the application of flow equations relies on the validity of 

the following assumptions (Harper, 1979): 

1. Flow is laminar 

2. Flow is steady 
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3. Flow is fully developed 

4. Barrel is rotating and the screw is stationary 

5. Channel is "peeled off" the screw and laid flat 

6. Slip does not occur at the walls 

7. Fluid is incompressible 

8. Gravity forces are negligible 

9. Inertial forces are negligible 

For a Newtonian fluid, the Hagen-Poiseuille equation can be applied as: 

Where K = geometric constant, depending on the type of die opening ( e.g: circle, slit, 

annulus), L\.P = pressure drop across the die, and = viscosity of dough at the die. 

The relationship between Q and L\.P is shown in Figure 2-2. 

0 
IJJ 
1-
<t a:: 

0 

LARGE DIE OPENING 

DIE CHARACTERISTICS 

. PRESSURE DIFFERENC~! 6P 

Figure 2-2. Flow vs. pressure drop for varying screw and die characteristics 

(Bernhardt, 1962). 
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Food Extrusion 

Food extruders first emerged as pasta shapers during the mid-1930s (Rossen et al., 

1973). Soon after, ready-to-eat (RTE) breakfast cereal was produced using an extruder 

equipped with a die. Food extruders now perform one or more of the following :functions 

(Seib, 1976; Frame, 1994): 

1. Mixes, disperses and homogenizes ingredients 

2. Cooks and melts 

a) denatures protein 

b) gelatinizes starch 

c) produces flavor and color 

3. Creates texture through pressure and flow, with or without heat 

4. Shapes and divides 

5. Dries or puffs the product 

6. Sterilizes the product 

7. Encapsulates flavors 

Different types of extruders may perform one, or in the case of a cooker-extruder 

producing instant breakfast cereal, the first six of these :functions. 

Most food extruders can be classified as being of either single- or twin-screw 

design. Screw configuration and speed, back-pressure requirements of the die, and 

ingredient characteristics are the primary variables affecting the extruded products 

produced by both of these machine types (Harper, 1986). 
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Single- versus twin-screw extrusion 

There are numerous mechanical, functional, economic and capability differences 

between single- and twin-screw extrusion systems (Table 2-1 ). Although up to one-half of 

the mechanical energy necessary for single-screw extrusion comes from direct steam 

addition, single-screw extruders are generally associated with higher energy costs with 

high moisture extrusion due to limited mechanical energy dissipation, heat transfer and 

poor mixing capabilities (Harper, 1992). Single-screw extrusion oflow moisture, high 

viscosity, feed materials results in high shear and disruption of the starch and protein 

molecules of the extrudate. Functionally, these molecular disruptions manifest as 

increased solubility and decreased water-holding capacity, paste viscosity, and hardness 

(Harper, 1992). 

In contrast, twin-screw extrusion systems have increased mixing and heat 

exchange capabilities for viscous food materials. The increased ingredient conveying 

angle (Table 2-1) allows twin-screw extruders to handle a wide range of ingredients 

compared with single-screw systems. In addition, reproducibility of processing is 

generally increased due to uniformity of shear rate across the channel depth, narrower 

residence time distribution and greater mixing capabilities of twin-screw extruders. 

From a purely economic standpoint, twin-screw extruders require significantly 

greater capital investment than do single-screw extruders. However, twin-screw extrusion 

systems are more versatile than single-screw systems, primarily due to their abilities to 

accommodate wider ranges of feed materials (e.g., high".'fat or high-moisture). 
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· Table 2-1. Relative comparison of single- and twin-screw extruders (Harper, 1992). 

Item 
Relative cost/unit capacity 

• Capital 
-Extruder 
- System 

Relative maintenance 
Energy 

• With preconditioner 
• Without precondition 

Screw 
• Conveying angle 
• Wear 

• Positive displacement 
• Self-cleaning . 
• Variable flight height 
• LID 
• Mixing 
• Uniformity of shear 

rate 
• Relative residence 

time distribution 
• Venting 

Drive 
• Relative screw speed 
• Relative thrust bearing 

capability 
• Relative torque and 

pressure 
• Gear reducer 

Heat transfer 

Operations 
• Moisture 
• Ingredients 
• Flexibility 

Single-screw 

1.0 
1.0 
1.0 

Half from steam 
Mechanical energy 

~ 10° 
Highest at discharge and 
transition section 

No 
No 
Yes 
4-25 
Poor 
Poor 

1.2 

Requires two extruders 

1.0-3.0 
Upto 5.0 

Upto 5.0 

Simple 
Poor- jackets control barrel 
wall temperature and slip at 
wall 

12-35% 
Flowing granular materials 

Narrow operating 

Twin-screw 

1.5-2.5 
0.9-1.3 
1.0-2.0 

Generally not used 
Mix of mechanical energy 
and heat exchange 

~30° 
Highest at restrictions and 
kneading disks 

No 
Self-wiping 

No 
10-25 
Good 
Good·· 

1.0 

Yes 

1.0 
1.0 

1.0 

Complex 
Good in filled sections 

6% to very high 
Wide range 

Greater operating 
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Systems analysis of extrusion 

As evident from the previous section on general extrusion principles, extrusion 

processing may be modeled using mechanical and thermodynamic principles. Thus, it is 

theoretically possible to optimize products via changes in processing variables. However, 

as food ingredients may undergo complex, or unpredictable, reactions, and are often 

heterogeneous in nature, modeling of food extrusion is difficult. Further, most foods 

exhibit non-Newtonian flow, i.e. shear stress is not directly proportional to shear rate via 

viscosity. 

Van Lengerich et al. (1989) developed a systems analysis model delineating 

process variables, system variables, and desired product parameters. An example of this 

model as it applies to starch-containing food materials is shown in Figure 2-3. Structural 

and molecular changes in a product are primarily dependent on the specific mechanical 

energy (Sl\1E) input (Meuser et al., 1992). The relative amount of energy, both thermal 

and mechanical, added to a raw material moving through the screw barrel may be 

calculated using torque, angle velocity of the screws, and product mass flow (Meuser et 

al., 1982). 

CAUSE 

EFFECT 

r -( Ruction hhnlor )- ( - Chongtt} - 1 

: DlulpellonolEneflll' \ /-lion- I I ,..,,_....._ ~-°' I I Rlloologlcal -- .,_ londlnga 
I . IIHcllon Klnellca J 

I ..:.=:::.. I r- t(x) • I Po=-&an I .. l(JI I P=• I 
lC Y 2 

Sc- Speed Speckle UKl>anlcol Solublllly 
Waler Conlon! Enervy lnpul (SUE) Vlacoolly 
-· Tampon,..... SpoclUc To.nMI "- ol S.- Conllglua- Enorvr Input (STEJ Gel1tlnwlllon 
T"""'9hP<tl Rate Rolldence Time re., ... 
0t<t Hole - Dl1ltlbullon Telle 
Fo<mu1a Colout 
Raw Ovellty 

Figure 2-3. Systems analytical l!lodel (van Lengerich et aL, 1989). 
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Tex.turization of Proteins 

Extrusion can be used to produce fabricated foods, such as meat analogs or 

extenders, from plant proteins. Texturized soybean protein (TSP) is produced primarily 

by extruding defatted soybean flour, soybean protein concentrate, and soybean protein 

isolate (Harper, 1981). 

The exposure of proteins to high temperature, pressure and mechanical shear in the 

extruder causes the development of the continuous plastic "melt" (Harper, 1981). Linked 

protein molecules align themselves parallel to the screw, and expand when forced through 

the die. The sudden pressure drop when the extrudate leaves the die causes part·of the 

water to flash off, resulting in an expanded, porous structure. 

Figure 2-4 depicts the five stages of extrudate expansion: viscoelastic melt, 

nucleation, extrudate swell, bubble growth and bubble collapse. If it is assumed that a 

uniform viscoelastic melt is formed and nucleation is heterogeneous and instantaneous, 

extrudate expansion is controlled by bubble growth secondary to moisture flash-off 

(Kokini et al., 1992). 

Mercier and Feillet (1975) found moisture content of the feed and extrusion 

temperature to be the most important factors influencing extrudate expansion. In protein 

systems, expansion is also dependent on both protein type and concentration, with soy 

protein isolate causing increased expansion ratios (Faubion et al., 1982). In addition, 

various other processing parameters, screw speed and configuration, heat input, etc., have 

been found to inconsistently influence expansion depending on feed type (Oliveira et al., 

1992). 
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EXPANSION 

EXTRUDATE 
SWELL 

NUCLEATION \ 

DIE 

BUBBLE GROWTH & COLLAPSE 

EXTRUDATE 

Figure 2-4. Schematic diagram of extrudate expansion (Kokini et al, 1992) 
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As outlined in the systems analytical model (van Lengerich et al., 1989), the 

specific mechanical energy input necessary to produce a viscoelastic melt will vary with 

the type and properties of feed used. Further, changes in processing parameters may have 

only limited potential to increase specific mechanical energy input depending on other 

processing and/or feed variables.· For this reason, it is erroneous to generalize the 

influence of individual parameters ( e.g., screw speed) on expansion characteristics without 

examining the entire extrusion process. 

Effects of extrusion on protein microstructure 

Although the precise mechanisms for protein texturization via extrusion are not 

well elucidated, both physical and chemical changes in protein micro- and macrostructure 

are clearly important. 

The effects of protein heating during extrusion results in numerous structural 

1 changes, including hydrolysis of peptide bonds, amino acid side chain modification, and 

covalent cross-linking (Cheftel et al., 1985). The influence of temperature on soy protein 

structure is outlined in Figure 2-5. Initial heating results in denaturation, followed by 

association of the protein subunits. Some or all of the associated subunits are disrupted 

with further heating and aggregate to form a concentrate solution or melt phase. At 

higher temperatures, covalent bonding may occur following protein unfolding. Finally, 

cooling leads to reformation of disulfide and noncovalent bonds. 

Texture-structure relationships are dictated primarily by protein cross-linking, 

either with protein or other macromolecules (Areas, 1992). Stabilizing forces for cross-
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linking may include hydrophobic, hydrogen, cation-mediated electrostatic interactions, and 

nondisulfide covalent and disulfide bonds (Areas, 1992; Stanley, 1989). However, the 

high level of stability of soy extrudates has led investigators to consider stronger cross-

linking interactions, such as peptide and isopeptide bond formation, and reactions with 

Maillard products (Stanley, 1989). 

TEMPERATURE (NONLINEAR SCALE! 

00 000 
Sut,unl! Arrangemenr 

0°~0 B 

Contorrna1oon Associated Otssocoated Aggregaled Aggrega1ec:1. Un-
SubuntlS Subuncs Subunits FOided Subunits 

Approxomate Scze 11S 25 80-100S >1005 

Bonding HydfcphOl>oC, IShort-L....S H)'CIIOl)l>obc. . DsulfiOe Oe-oe 
lorllC.~ lnlermedlaleJ lonlC.~ followed by UnlOldlng. 

H)'Cltcphob,c Borics,ng 
andlsope;)c,cle 

Co,a1en1 Boncsong 

Figure 2-5. Molecular changes in soy proteins following heating (adapted 

from Stanley, 1989 and Armstrong et al, 1979). · 

Proponents of the newly formed peptide bond mechanisms for texturization of 

proteins point to the decreased availability following extrusion of amino acids important in 

isopeptide cross-linking (asparagine, aspartic acid, cysteine, glutamine, glutamic acid, 

histide, lysine and methionine) as evidence for this theory (Jeunink: et al., 1979). · 

However, Otterburn et al. (I 977) found no correlation between isopeptide formation and 

the concentration of reactive amino acids. 
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Other investigators have pointed to disulfide-hydrophobic-electrostatic bonds as 

the primary interactions responsible for protein texturization (Shimada et al., 1988; 

Utsumi et al., 1985). Areas et al. (1992) found that the entire structure of soy extrudates 

collapsed following the addition of disulfide bond reducing agents. In addition, conditions 

necessary to produce the energy of activation for peptide bonds are not present at the end 

of the extruder barrel (Areas, 1992). 

Effects of extrusion on protein macrostructure 

The production of a well-aligned protein fiber matrix is integral to the texturization 

process. Specific mechanical energy input, processing variables and feed composition all 

play important roles in texturized protein structure, quality and functionality. 

In soy proteins, heating during the extrusion process denatures 7S and 11 S 

proteins, and mixing prevents structural realignment until the viscoelastic melt begins to 

flow through the die (Guy, 1994). Moisture release at the die causes air-space vacuole 

formation resulting in a spongy texture. Vaporization occurs during cooling causing 

plasticity loss and solidification of the extrudate, and the ultimate generation of a porous, 

structure with parallel alignment of the protein fiber matrix (Rhee et al., 1981). 

Smith (1975) outlined six major processing variables which influence the 

morphological properties of extrusion-texturized proteins: 

1. Control of product moisture levels and selection of moisture application point 

during processing, and determination of moisture type ( e.g., water, steam, 

syrup, etc.). 
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2. Control of product temperatures throughout each point in the extrusion 

process. 

3. Selection of ingredients appropriate to achieve the desired :functional 

characteristics. 

4. Control of ingredient pH. 

5. Selection of extruder configuration and components designed to achieve 

appropriate temperatures and residence times in each section. 

6. Selection of dies to produce desired shape and expansion characteristics of the 

final product. 

Clearly, extrusion cooking temperatures are a major factor in producing texturized 

protein extrudates. Plasti:fication of soy proteins generally requires a minimum 

temperature of 150° C, with greater temperatures required for lower moisture contents 

(Cheftel et al., 1992). Lower temperatures may result in an unstable product which 

disintegrates in boiling water (Kinsella, 1978). An appropriate time-temperature 

relationship is also necessary to achieve plasti:fication. A minimum residence time of~ 150 

sec, obtained via barrel length, screw speed, feed rate or screw reversal segments, is 

generally recommended for soy proteins. 

Die configuration and temperature also strongly influence protein texturization. 

Side-discharge dies can be used to produce a highly layered structure and meat-like 

texture (Harper, 1986). Excessive shear at the die generally results in extrudates of poor 

textural quality secondary to disruption of protein cross-linking (Holay et al., 1982). Die 
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. cooling can be used to reduce expansion, resulting in a high-density extrudate (Crocco, 

1976). 

Present Study 

Extruding-Expelling 

Extruding-expelling (E-E) was first developed by Nelson et al. (1987) at the 

University oflllinois as a method of mechanically extracting oil from soybeans. This 

process is lucrative due to low capital investment costs, enhanced extraction capabilities, 

and ability to produce oxidatively stable oils and meals low in free fatty acids. Recently, 

there has been interest in utilizing E-E flour to produce texturized soy flour (Lusas et al., 

1996) as a means of adding value to E-E operations. . 

A simplified diagram of the E-E process ofNelson et al. (1987) is shown in Figure 

2-6. The extrusion portion of the process is used as a pretreatment for tissue disruption 

and heating. The expeller ( continuous screw press) causes further tissue disruption and 

forces oil from the meal via pressure. 

Conventional screw-pressing operations often require holding cracked beans at 

high temperatures (116-132 °C) for a relatively long period of time to enhance oil 

extraction. Extrusion offers the advantage of being a high-temperature, short-time 

treatment (135° C, 30 sec). Compared with traditional preparation methods, extrusion 

conditioning of soybeans allows screw presses to handle up to the three times the capacity 

of normal soybeans due to moisture flash-off at the extruder (Williams, 1993). Higher 

moisture beans (> 10%) generally require the use of a steam dryer, however, high-
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moisture-extrusion-prepared beans are handled well by screw-presses provided there is 

adequate aeration of the extrudate prior to pressing (Williams, 1995). 

E-E Mini-mills 

E-E mini-milling operations have been increasing in number during the past several 

years. These mills utilize extrusion technology to expand the structure and increase the 

porosity of soybeans, thereby increasing the effectiveness of screw pressing to expel the 

oil. 

BEAN 

! r Water 

MOISTURE · 0 CONDITIONING 

I 
X-
GRINDING 

EXTRUSION 
Oil 

EXPELLING 

--.-Cake 

Figure 2-7. Flow diagram of E-E of soybeans (Nelson et al, 1987). 
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E-E mills are small, with a capacity of only ~6-120 ton/day (200-4,000 bu), but are 

inexpensive to construct ($150,000-200,000 capital investment), and have relatively low 

operating costs ($25/ton for fixed and variable costs including electrical, labor, 

maintenance and depreciation) (Van Dyne, 1997; Said, 1999). These low investment 

costs offer opportunities to add value to soybeans in many rural communities, creating 

jobs and economic activity. 

These E-E operations offer several unique advantages compared with traditional 

soybean extraction plants. First, large-scale extraction facilities are not designed to 

preserve identity of soybeans. Growing concern about genetically modified (GM) crops 

from both consumer acceptance and regulatory standpoints reinforces the need for 

operations with the capability to ensure GM-free products. In addition, value-added crops 

obtained via both traditional plant breeding and GM methods must also be identity 

preserved. Larger scale extraction facilities may not be economically feasible due to low 

production/yield during the early stages of development of these crops, and because of the 

large number of value-added traits currently being developed. 

E-E mills are attractive in locations where the cost oflarge-scale solvent extraction 

facilities is not justified due to inadequate seed supply. Environmental laws in some areas, 

such as California, restrict the size and type of extraction facilities via stringent air-

pollution standards. The use of hexane as an extraction solvent has also come under · 

increased scrutiny by the Environmental Protection Agency as a result of the 1990 Clean 

Air Act. The elimination ofthis chemical in E-E oilseed processing allows mini-mills to 

meet growing consumer demands for hexane-free oils and products (Hauman, 1997). In 
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addition, because E-E is solvent-free, crude oil and meal can be marketed as organic 

provided organic farming methods were used in soybean production. This is particularly 

important in light of the ever increasing organic and health food market. Finally, mini-

milling operations are ideal for processing niche market products, including value-added 

food and industrial products such as gourmet food oils, lubricants, herbicide adjuvants, 

printing inks, and bi~diesel. 

Experimental Objectives 

This study involved two broad objectives: 1) to optimize extrusion conditions and 

fully characterize partially defatted soybean meals (flours) produced by E-E; and 2) to re-

extrude partially defatted E-E soybean flours to produce texturized vegetable proteins. 

Partially defatted soybean flour optimization and characterization 

In order to compete with larger-scale operations, mini-mills must investigate 

methods to add value to.the resulting E-E products (oil and meal). Currently, the partially 

defatted soybean flour produced from these operations is being used primarly in the 

natural foods market in baked goods, ready-to-eat cereals, and high-energy beverages. 

Partially defatted soy flour is not used extensively in mainstream products because of its 

novel nature, the lack of familiarity with its functional characteristics, and the lack of · 

research capital in smaller E-E operations. 

One potential use for partially defatted soy flour is the production oftexturized 

vegetable proteins. However, it is believed that partially defatted soy flour will perform 
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much differently than full-fat soy flour or grits because of functionality changes brought 

about by extrusion and its reduced oil content. The exposure to heat and shear during the 

extrusion process causes denaturation of proteins and exposes functional groups of amino 

acids to reducing sugars resulting in the formation of Maillard reaction products (Harper, 

1989). 

Traditionally, defatted soy flakes or flours with the following characteristics have 

been used in the production oftexturized vegetable proteins: 50% protein minimum, 

3.5% fiber maximum, 1.5% fat maximum, and a protein dispersibility index (PDI) of 60-70 

(Kearns, 1988). These properties are necessary to ensure flavor and functional 

characteristics of the final product. In general, the soy flours obtained via E-E have higher 

fat contents (5-9%) and lower PDI values. 

The goal of the present study was to determine the range of PDI and residual oil 

contents possible when using E-E processing and to characterize these flours to determine 

their suitabilities for human food or animal feed applications. The partially defatted soy 

flour was produced at a commercial mini-mill (Iowa Soy Specialties, Vinton, IA) using · • . . 

configurations and settings selected based on operator experience at that facility. Most 

points are commonly or could be easily produced at similar mini-mills with no change in 

infrastructure. 

Many commercial E-E operations used a dry extrusion system, where oil is used as 

a plasticizer. In contrast, most expansion systems utilize moisture, in the form of steam, 

as both energy input and to increase moisture to ~12%. Following moisture flash-off, dry 

extrusion results in a product with ~5-7% moisture. Production of partially defatted soy 
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flour with a range of PDI values and residual oil contents was achieved by changing 

extruder and expeller operating conditions. Extruder screw configuration was 

manipulated by altering shear locks and using single or double flighted screws. Expeller 

conditions were modified by changing choke settings and by passing twice through the 

expeller in some instances. 

Extrusion-texturization of partially defatted soy"flour 

Texturized vegetable proteins are normally produced by introducing raw material, 

generally soy flour previously moistened to 10-40%, in~o an extruder where it is conveyed 

by an Archimedes screw or screws through a grooved barrel under high shear and 

pressures at temperatures of 140-180 °C (Areas, 1992). The physical characteristics 

(texture, density, chewiness, rehydratability and_color) of extruded products can be altered 

by manipulating several processing parameters, including moisture content, pH, 

temperature gradients, pressure, shear rates (screw speed), residence time, extruder type 

and configuration, die shape, size, temperature and geometry, and post-extrQ,sion 

treatments (Kinsella, 1978). 

The goal of this portion of the study was to select a range of partially defatted soy 

flour from the first portion of the study based on characterization tests, to reextrude these 

flours to produce texturized vegetable proteins, and to determine the effects of PDI and 

residual oil content on texturized soy protein. Process conditions were optimized using 

the center point of PDI versus oil content for the selected flours. 
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Partially de:fatted soy flour with different residual oil contents and PDI values were 

reextruded under the same conditions (moisture content, temperature, screw speed and 

configuration, residence time, etc.) using a lab-scale Leistritz Micro-18 twin-screw 

extruder (Leistritz Extruder Corp., Somerville, NJ) (Figure 2-7). 

Hypothesis 

It is the central hypothesis of this study that E-E processing parameters can be 

manipulated to produce soybean meal with a wide range of properties. Additionally, it is 

hypothesized that texturized soy protein produced by reextruding the soybean meals with 

the highest PDI and lowest residual oil content will exhibit the most desirable textural and 

sensory characteristics. 
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Figure 2-7. Leistritz extruder. 
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CHAPTER 3. CHARACTERIZATION OF EXTRUDED-EXPELLED 

SOYBEAN MEALS AND EDIBLE FLOURS 

A manuscript to be submitted to the Journal of the American Oil Chemists' Society 

T.W. Crowe and L.A. Johnson 

Keywords: Extrusion, expelling, partially defatted soy flour, PDI, soybean meal, soybean 

processing, oil extraction, screw pressing 

Abstract 

There has been nationwide growth in small-scale extruding-expelling (E-E) 

facilities. In order to compete in a highly competitive market, these E-E operations must 

look for ways to optimize production of their products (oil and meal). The objective of 

this study was to determine the range of residual oil contents and protein dispersibility 

indices (PDI) possible with E-E processing of soybeans. We also characterized the 

partially-defatted meal for other factors important in food and feed applications. Residual 

oil and PDI values ranged from 4.7-12.7% and 12.5-69.1, respectively. E-E conditions 

significantly influenced residual lipase, lipoxygenase (Ll-L3), and trypsin inhibitor 

activities. Chemical analyses were different for whole, dehulled and reduced-moisture 

soybeans, with dehulled soybeans tending to have higher residual oil contents at higher 

PDI values. It was possible to process soybeans with different characteristics ( e.g. 

moisture content, whole, dehulled) to produce meals and flours with wide ranges of 

properties, providing mini-mills with an excellent opportunity for marketing value-added 

products. 
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Introduction 

Extruding-expelling (E-E) is a relatively new process developed by Nelson et al. 

(1) to mechanically recover oil. This process eliminates the need for costly steam dryers 

and conditioners and associated steam generation, enhances oil extraction, and eliminates 

the use of organic solvents. Small-scale E-E facilities, or mini-mills, are increasing in 

popularity because of the low capital investment required, and the ability to process 

identity-preserved and organic products. These low-fat, high-protein, high-energy meals 

are desirable products for use as animal feeds, especially dairy cattle. E-E soybean meal 

reportedly has increased digestible energy and amino acid availability compared with 

solvent extracted meal (2). In addition, the lack ofresidual organic solvents in E-E meals 

make them acceptable for human consumption. 

To develop value-added products from E-E soybean meal, it is important to 

understand the range of protein solubility, oil content, and enzyme and protease inhibitor 

activities that are possible with this new processing technology. Soy flours with higher 

protein dispersibility indices (PDI) and lower oil contents are generally considered to 

produce higher quality texturized proteins with fewer processing difficulties. The 

activities of certain enzymes are often associated with off-flavor development or anti-

nutritional effects (3). Increasing the range of potential PDis for E-E soybean mills will 

facilitate the use of these products in a wider variety of food applications. 

The objective of this study was to determine the range of residual oil contents and 

PD Is of partially defatted soy flours that are possible by changing extruder and expeller 

conditions within the confines of a commercial E-E mini-mill operation. These partially 
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defatted soy flours were characterized to determine their suitabilities for human food and 

animal feed applications. 

Experimental Procedures 

Experimental design. This experiment was designed to use E-E to produce partially 

defatted soy flours with the widest possible range of residual oil and PDI. The targeted 

PDI and residual oil values were selected to represent the widest range believed to be 

possible and useful using different processing conditions that are easily attainable. or 

commonly used at E-E mini-mills (Fig 1). Both whole and dehulled soybeans were used. 

Raw materials. Whole soybeans (L610) were obtained from Iowa Soy_ Specialties 

(Vinton, IA) and stored at 9.5% moisture content in the plant until processed. Som~ 

soybeans were dried to 6.7% moisture using ambient temperature (22 °C) air. The beans 

were dehulled using traditional methods of cracking the soybeans into 6-8 pieces with a 

corrugated roller mill (Ferrell-Ross, Oklahoma City, OK), and then aspirating the hulls 

with a Multi-Aspirator (Kice, Wichita, KS). 

Extrusion and expelling. An Insta-Pro 2500 dry extruder (Triple ·"F"/Insta-Pro, Des 

·Moines, IA) was used to extrude whole and dehulled soybeans. Oil expression was 

carried out with an Insta-Pro 1500 screw press. The extruder is capable of varying barrel 

temperature and mechanical input by manipulating the screw design and shear lock 

configuration, as well as via die (nose cone) restriction and design. Additionally, feed rate 
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to the extruder could be changed. Residence time within the extruder was approximately 

20-25 sec. Processing parameters used to obtain the selected residual oil contents and 

PDI are shown in Table 1. Three samples were expelled twice to produce very low 

residual oil contents. After the initial expelling, samples were collected into large tubs and 

held until sufficient sample was produced to be refed into the expeller. E-E processing 

was carried out in duplicate. Following E-E, the press cake (both single- and twice-

expelled) was placed into plastic-lined paper bags and allowed to cool to ambient 

temperature in the open bag until sealing for transport. Samples were stored at -20 °C 

until milled. 

Flour milling. The soymeal press cake was milled to (94. 7% < 100 mesh) by first passing 

it through a set of cracking rolls and then through a Fitzmill (The Fitzpatrick Company, 

Elmhurst, IL). The Fitzmill was operated at 7000 rpm using the blades in a blunt 

hammermill configuration, at 30 rpm feed rate, and fitted with a 1536-0060 screen. Milled 

samples were stored at -20 °C until analyzed. 

Meal characterization. Moisture contents of soy flours were determined according to the 

2-hr oven drying method (AOCS official method Ba-38). Crude fat content was 

determined by Goldfisch extraction (AACC method 30-25). Crude protein was measured 

by using a Perkin Elmer Series II Nitrogen Analyzer 2410 (Perkin Elmer Corp., Norwalk, 

CT). Nitrogen was multiplied by a factor of 6.25 for estimating crude protein content. 

Lipase activity was measured in duplicate as outlined by Moscowitz et al. ( 4) with the 
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modifications of Guzman et al. (5). Lipoxygenase activity was measured in duplicate as 

outlined by Zhu et al. (6). Trypsin inhibitor (TI) activity and PDI values were analyzed 

according to AOCS official methods at Woodson-Tenent Laboratories (Des Moines, IA). 

Moisture content, crude protein and crude fat were analyzed in triplicate. 

Statistical analysis. . Statistical analyses were performed using the General Linear Model 

procedures of SAS 6.06 (SAS, 1991). Significance was established at P < 0.05. 

Results and Discussion 

Proximate analyses. Results from the compositional analysis of the E-E soymeal 

samples are presented in Table 2. Partially defatted soy flours with a wide range of PD Is 

(12.45-69.10) and residual oil contents (4.73-12.65%) were produced by E-E. Highest 

and lowest oil extraction recoveries were 76.0% (13/5/1) and 35.8% (63/13/1), 

respectively. Dehulled soybeans tended (not significant at P < 0.05) to have increased 

PDI values and higher residual oil contents compared with whole soybeans under identical 

E-E conditions, as in the case for sample 14/7/1 (dehulled) versus 20/5/1 (whole). These 

results are contrary to those ofNelson et al. (1) who reported significantly higher oil yield 

when using dehulled soybeans, although that difference diminished following removal of 

· oil fines or foots. We also observed higher foots contents during oil collection when 

dehulled soybeans were processed. This is an important consideration for processors. 

More oil settling capacity will be required when dehulling soybeans prior to E-E 

• processmg. 
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Whole soybeans produced significantly higher extrusion barrel temperatures 

compared with dehulled soybeans (Table 3). Jin et al. (7) reported that fiber addition 

caused extruder torque, die pressure, and specific energy to increase which they attributed 

to increased dough mass viscosity. Additionally, total dietary fiber content (not measured) 

is expected to be significantly higher for E-E meal from whole soybeans than that of 

dehulled soybeans. Given the reported health benefits associated with dietary fiber (8) the 

use of whole soybeans might be attractive in human food applications, if fiber was not 

detrimental to performance, taste and texture of foods in which the flour is incorporated. 

As expected, twice-expelled samples had significantly lower residual oil contents 

compared with single-expelled flours processed under identical conditions (Table 2). 

Single-expelled meal had approximately 2 percentage points higher residual oil content 

than the twice-expelled meal. Nelson et al. (1), using a different type of expeller, found 

PDI was ~ 2 percentage points lower in single-expelled flours. In the present study, no 

significant changes in PDI were observed in twice-expelled flours. Thus, expelling in series 

may be an effective in decreasing the residual oil content while maintaining protein 

functionality. This may be significant for use in lower fat flours for human food 

applications. 

The E-E meals produced from reduced-moisture (6.7%) soybeans did not differ 

significantly from higher moisture (9.5%) soybeans in compositional analyses (Table 2). 

Drying did not improve oil recovery. The relationship between drying and PDI is unclear. 

There was a 5 percentage point decrease in PDI associated with dried samples 58/8/1 vs 

54/8/1. In addition, increased barrel temperatures were observed during extrusion of the 
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dried soybeans (Table 4). Zhu et al. (6) found that PDI significantly decreased during dry 

extrusion with increasing extrusion temperature and moisture content. 

PDI was strongly correlated with residual oil content (R = 0.824, P < 0.0001). 

Comparison of low (10-40), medium (40-60) and high(> 60) PDI samples revealed 

significantly higher mean residual oil content for high- compared to low-PDI flours (high 

PDI = 10.9%, low PDI = 5.9%, P < 0.05; Fig 2). Temperatures in the three extruder 

zones were the most important factors affecting PDI and residual oil ofE-E partially . 

defatted soy flour. As the temperature of extruder zone 1 increased, both PDI and 

residual oil content decreased (R = -0.861 (PDI), R = -0.946 (residual oil), P < 0.05; Fig 

3). Similar correlations were found with respect to the temperatures of extruder zones 2 

and 3. These data indicate that altering the final PDI and residual oil content ofE-E 

partially defatted ·soy flour is possible by adjusting the feed rate, screw and shear lock 

configurations, thereby changing the extrusion zone temperatures. · 

· The low extrusion temperatures necessary to produce high PDI generally is less 

efficient in rupturing soybean spherosomes, and therefore does not facilitate oil extraction 

as evidenced by high residual oil content. Because this study was designed to produce 

wide ranges of PDI and residual oil values ( e.g., high PDI, low residual oil), the 

correlation between PDI and residual oil was not linear. This may indicate that producing 

partially defatted soy flour with high PDI may require further alterations in feed materials 

and processing conditions to concurrently obtain low residual oil content. 
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Enzyme activities of E-E soy flour .. TI activities (Table 4) ranged from 4.5 to 97.5% of 

the activity of raw soybeans and decreased with increasing extruder barrel temperature (R 

= -0.816, P < 0.05; Fig 4). Guzman et al. (5) varied extrusion temperatures from 127 to 

160 °C and reported residual TI activities in non-expelled samples between 31 and 2% of 

the original activity. Eweedah et al. (2) and Nelson et al. (1) used similar extrusion 

systems at temperatures of 150 °C and 135-141 °C, respectively. In both studies, TI was 

reduced to ~6% of its original activity.· 

Lipase activities were not significantly different between samples and were not 

significantly correlated with extruder barrel temperature. These data are in agreement 

with those previously reported by Guzman et al. ( 5) who found no trend for lipase activity 

in extrusion processed soybean-corn mixtures. 

The activities all three lipoxygenase isozymes (Ll, L2 and L3) decreased with 

increasing temperature (P < 0.05) and were not detectable in most of the partially defatted 

soy flour samples (Table 5). Enzyme activities were expected to be relatively low 

following E-E processing because of the high temperature and long hot hold times in both 

the extruder and expeller. Activity levels ofL-3, the most heat labile isozyme, were much 

lower than those observed for the L-1 _and L-2 isozymes (Table 5). No lipoxygenase 

activity was detected in partially defatted soy flours extruded at temperatures greater than 

89 °C. These results are consistent with those reported by Zhu et al. ( 6) and Guzman et 

al. (5) who detected no lipoxygenase activity at temperatures greater than 107 and 127 

°C, respectively. These data suggest that only those partially defatted soy flours produced 
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using low temperatures to achieve a high PDI may contain appreciable lipoxygenase 

activity. This may be important in human food applications ofE-E partially defatted soy 

flour because these enzymes may significantly affect the color and flavor of foods in which 

the flours are incorporated. 
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Table l. Extruder and Expeller Operating Conditions for Production of 
Extruded-Expelled Soybean Flour 

Sample Codea Extruder Con:figuration6 · Nose Cone, Choke Setting, Current, Amps 
cm cm Extruder Expeller 

13/5/1-W 11-6-6-6, DF 0.8 1.0 128 28 
26/5/1-W 11-11-6-6, SF . 0.8 1.0 119 28 
20/5/1-W 11-6-6-6, DF 1.0 1.1 112 25 
14/7/1 11-6-6-6, DF 1.0 1.1 105 22 
43/6/1 11-11-6-6, SF 1.0 1.9. 107 21 
38/8/1 llR-llR-llR-11, SF Tight 0.9 94 21 
45/7/1. llR-llR-llR-11, SF 0.8 1.1 95 22 
61/10/l llR-llR-llR-llR, SF 1.0 0.9 81 21 
63/13/1 llR-llR-llR-llR, SF 1.6 Tight 72 25 
54/12/1 llR-llR-llR-llR, SF 1.6 0.9 81 . 21 
69/12/1 llR-llR-llR-llR, SF 1.6 1.1 74 20 
35/5/2 llR-llR-llR-11, SF 0.8 1.0 109 24 
43/7/1-L llR-llR-llR-11, SF 0.8 1.0 119 34 
67/10/2 llR-llR-llR-llR, SF 1.6 1.1 72 22 
58/8/1 llR-llR-llR-llR, SF 1.6 1.0 107 28 
55/6/2 llR-llR-llR-llR, SF 1.6 1.0 107 28 
54/8/1-L llR-llR-llR-llR, SF 1.6 1.0 98 28 

0 Denotes POI/residual oil content/times expelled; W indicates whole beans; L indicates low moisture. 
b Numbers and R denote shear lock type used from feed end to die end of the extruder; DF denotes 

double flighting of the screw; SF denotes single flighting of the screw. 
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Table 2. Chemical Analyses of Extruded-Expelled Soybean Floura 

Sample Dry Matter, % Crude Protein, PDI Residual Oil, 
Code6 %mfb %mfb 
13/5/1-W 96.lgn 50.4cd 12.sa 4.73 

26/5/1-W 94_5e 48.lb 25.6b 5_3ab 
20/5/1-W 95.61g 49_4bc 20.0ab . 5.2ab 
14/7/1 95.~ 50.2c<l 14.3a 6.8bc 
43/6/1 94.lde 51.ld 42.9cd 6.3b 
38/8/1 95.i 51.4<l 37.8c 7.8c 
45/7/1 94.8°f 51.2d 45.2cd 7.6° 
61/10/1 94_2<l• 50.6c<l 61.4°fg 9.6<l 
63/13/1 93.8d 49.6° 63.0etg 12.7° 
54/12/1 92.8c 48.6bc 54_0<1.r 11.6° 
69/12/1 91.8b 49.6° 69.lgh 11.7° 
35/5/2 94_3<le 51.6<l 35_4bc 5_4ab 

u 96.5h 50.9d - 43.0cd 6.6bc 43/7/1-L 
67/10/2 94_2<l• 50.6c<l 66.7fg 9_9<l 
58/8/1 93.'P 50.9cd 58.lefg 7.8° 
55/6/2 94.0de 52.4d 55_4def · 5_7ab 
54/8/1-L 96.~ 50_4cd. 53.8def 8.1° 
Control 91:33 39.7° 98.i 19_7f 

a Means 'Within each column 'With different superscripts are significantly different at P<0.05. 
b Denotes PDI/residual oil content/times expelled; W indicates whole beans; L indicates low moisture. 
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Table 3. Feed Rates and Extruder Barrel Temperatures0 

Sample Codeb Feed Rate, Barrel Temp., °C 
kg/hr Zone 1 Zone2 Zone3 

13/5/1-W 590 162 147 107 
26/5/1-W 615 138 88 56 
20/5/1-W 590 144 107 89 
14/7/1 590 144 102 76 
43/6/1 730 129 80 48 
38/8/1 590 132 72 28 
45/7/1 590 126 57 31 
61/10/1 590 117 42 27 
63/13/1 950 86 55 27 
54/12/1 590 89 34 24 
69/12/1 590 88 27 23 
35/5/2 730 129 99 41 
43/7/1-L 730 137 76 46 
67/10/2 590 85 54 27 
58/8/1 730 119 64 29 
55/6/2 730 119 64 29 
54/8/1-L 730 129 56 37 
Control N/A N/A N/A N/A 

a Mean values of two replications. 
bDenotes PDI/residual oil content/times expelled; W indicates whole beans; L indicates low moisture. 
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Table 4. Lipase and Trypsin Inhibitor 
Activities of Extruded-Expelled Soybean Flours 

Sample Lipase, Trypsin Inhibitor, 
Code0 mMWlminlg trypsin inhibitor units 
131511-W 18.6 :::;2,000 
261511-W 21.0 5.200 
201511-W 16.2 NIAb 
14/711 15.8 5,000 
431611 11.8 NIA 
381811 28.0 NIA 
45/711 15.4 13,950 
61/1011 18.8 NIA 
63/1311 15.1 NIA 
5411211 17.9 26,900 
6911211 10.7 36,500 
351512 20.9 10,200 
43/711-L 13.8 NIA 
6711012 10.1 43,500 
581811 19.2 NIA 
551612 17.5 27,275 
541811-L 13.2 NIA 
Control 19.4 44,600 

0 Denotes POI/residual oil content/times expelled; W indicates 
whole beans; L indicates low moisture. 

h NI A denotes not applicable. 
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Table 5. Lipoxygenase Isozyme (L-1, L-2, L-3) Activities 
of Extruded-Expelled Soybean Flours0 

Sample· Lipoxygenase, % of 
Codeb original 

L-1 L-2 
13/5/1-W NDC ND 
26/5/1-W ND ND 
20/5/1-W ND ND 
14/7/1 ND ND 
43/6/1 ND ND 
38/8/1 ND ND 
45/7/1 ND ND 
61/10/1 ND ND 
63/13/1 16.4b 12.9b 
54/12/1 9.3ab 8.la 
69/12/1 10.7ab 14.lb 
35/5/2 ND ND 
43/7/1-L ND ND 
67/10/2 7.8a 12.lab 
58/8/1 ND ND 
55/6/2 ND ND 
54/8/1-L ND ND 

L-3 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
4.4a 
3.9a 
5.la 
ND 
ND 
2.lb 
ND 
ND 
ND 

Control 100.oc 100.oc 100.oc 
0 Means within each column with the different superscripts are significantly different 

P<0.05. 
b Denotes PDJ/residual oil content/times expelled; W indicates whole beans; 

L indicates low moisture. 
c ND denotes not detectable. · 
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CHAPTER4. TWIN-SCREW EXTRUSION TEXTURIZATION OF 

EXTRUDED-EXPELLED SOYBEAN FLOURS 

A paper to be submitted to the Journal of the American Oil Chemists' Society. 

T,W. Crowe and L.A. Johnson 

Keywords: Extrusion, texturized protein, soy protein, soy flour, PDI, fat. 

Abstract 

Texturized soy proteins (TSP) have been produced from hexane-extracted soy 

flours having a narrow range of characteristics. The objective of this study was to 

determine the influence of protein dispersibility (PDI) and residual oil content on the 

extrusiontexturization of partially defatted soy flours produced by extrusion-expelling (E- · 

E). Ten partially defatted soy flours with residual oil contents and PDI values ranging 

from 5.5-12.7% and 35.3-69.1, respectively, were successfully texturized using a twin-

screw extruder. Water-holding capacity was greater in TSP prepared from flours with 

lower residual oil contents. Bulle density was significantly lower in TSP prepared from E-

E soy flours compared to a commercial product made from hexane-extracted soy flour. 

The texture of extended ground beef patties prepared from texturized E~E soy flours was 

similar to that of 19% fat ground beef. Overall flavor acceptability was strongly correlated 

(R = 0.761) with residual oil content of the E-E flours. In general, lower residual oil and 

higher PDI flours exhibited better texturization and extrudate qualities. 
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Introduction 

Defatted soybean flours and flakes are valuable material sources for extrusion-

texturized vegetable proteins (1 ), a product used in ground meat products and meat 

analogs (2). Small-scale extruder-expeller (E-E) operations, or mini-mills, have been 

increasing in popularity because of their low capital investment, local feed demand for 

high-energy protein supplements, and abilities to process identity-preserved and organic 

products (3). Partially defatted soybean flours are important co-products of this process, 

particularly as these flours can be used for human as well as animal consumption .. In order 

to compete in highly competitive oil and meal markets, E-E operations must explore 

potential markets for these partially defatted soy flours, such as the production of 

texturized soy protein (TSP). 

Hexane extracted and flash desolventized soybean flours and flakes are widely 

used to produce TSP. These flours typically contain less than 1 % fat and have PDI values 

> 80. It is uncertain whether E-E meal can be texturized and the conditions necessary for 

extrusion-texturization ofE-E partially defatted soy flour are unknown. The objective of 

this study was to extrusion-texturize E-E produced partially defatted soy flours having 

wide ranges of protein dispersability indices (PDI) and residual oil contents. The 

hypothesis of this study was that partially defatted soy flours with higher PDis and lower 

residual oil contents can be extruded to produce a better quality TSP compared with 

partially defatted soy flours having lower PDis and higher residual oil contents. 
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Experimental Procedures 

Materials. Whole soybeans (Latham 610) were obtained from Iowa Soy Specialities 

(Vinton, IA) and stored at 9.5% moisture content on their premises until processed. The 

soybeans used to study the effect of low moisture content on oilseed processing were 

dried to 6.7% moisture content using ambient air grain driers in the Center for Crops 

Utilization Pilot Plant at Iowa State University (Ames, IA). Dehulled samples were 

processed using traditional methods of first cracking the soybean into 6-8 pieces with a 

roller mill (Ferrell-Ross, Oklahoma City, OK) and then aspirating the hulls with a Multi-

Aspirator (Kice, Wichita, KS). A commercial TSP, ADM 165-118, was provided by 

Archer Daniels Midland Co. (Decatur, IL). 

Extruding and expelling. Extruding-expelling whole and dehulled soybeans was 

performed at Iowa Soy Specialties (Vinton, IA) using an Instra-Pro 2500 dry extruder and 

an Insta-Pro 1500 screw press (Triple IIF"/Insta-Pro, Des Moines, IA). Following E-E 

processing, the presscak:e was placed into plastic-lined paper bags and allowed to cool at 

ambient temperature and then sealed for transport. The soymeal cake was milled to <100-

mesh (94.7%) by using Fitzmill (The Fitzpatrick Company, Elmhurst, IL). The Fitzmill 

was operated at 7000 rpm using the blades in a blunt hammermill configuration, at 30 rpm 

feed rate, and fitted with a 1536-0060 screen. Milled samples were stored at-'20 °C prior 

to texturization. 
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Texturization. A co-rotating lab-scale Leistritz Micro-18 (American Leistritz Corp., 

Somerville, NJ) twin-screw extruder with a screw diameter of 18 mm and an LID ratio of 

25 was used. The barrel was divided into six electrically heated sections including the die. 

The twin screws had segmental screw elements so that the amount of shear input could be 

varied. A high-shear screw design with six temperature zones (Fig 1) operating at a screw 

speed of300 rpm was used for all treatments. Feed rate, screw speed, die, screw design,. 

temperature and flour moisture content were constant for each treatment. All partially 

defatted soy flours were hydrated to 27% moisture, mixed and allowed to stand overnight 

at 4 °C for tempering. The flours were supplied to the extruder at a uniform feed rate of 

150 g/min using a metering feeder (Accurate Inc., Whitewater, WI). The extruder was 

brought to steady state for each treatment for a minimum of 5 min prior to sample 

collection. The extrudate was collected and dried at 50 °C for 24 hr. 

Extruder torque and pressure. Measurements for screw torque and die pressure during 

extrusion were monitored by a digital control panel readout, and were recorded after 

steady state had been reached and held for approximately 2 min. 

Extrudate milling and sizing. The dried extrudates (TSP), including a commercial sample 

(ADM 165-118, Archer Daniels Midland Co., Decatur, IL), were milled and sized using a 

set of corrugated cracking rolls (Witt Corrugating Inc., Wichita, KS) to pass through a 6-

mesh screen and be contained on a 12-mesh screen. Milled TSP was stored in sealed 

polyethylene bags at 25 °C until analyzed. 
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Soy flour composition. Moisture contents of soy flours were determined according to the 

2-hr oven drying method (AOCS official method Ba-38). Crude fat contents were 

determined by Goldfisch extraction (AACC method 30-25). Crude protein was measured · 

using a Perkin Elmer Series II Nitrogen Analyzer 2410 (Perkin Elmer Corp., Norwalk, 

CT). Nitrogen contents were multiplied by a factor of 6.25 to estimate crude protein 

content.• 

Water-holding capacity. Water-holding capacity was determined by weighing 30 g TSP 

into a 400-ml beaker and adding 150 ml of 4 °C water. The sample was held in a 

refrigerator for 1 hr. The beaker was emptied onto a pre-weighed 20-mesh screen tilted at 

a 25° angle and allowed to drain for 3 min. The screen was blotted with a paper towel to 

remove excess water and weighed. Water-holding capacity was calculated as (hydrated 

weight-dry weight)/dry weight. 

Bulk density. TSP was added to a 100-ml graduated cylinder in 20-ml intervals. At each . 

interval the cylinder was lightly tapped against a bench surface 20 times. The filled 

cylinder was emptied into.a tared beaker to determine the weight oftexturized soy protein. · 

Bulk density was calculated as weight of texturized soy protein per 100 cc volume. 

Texture analysis of TSP. Texture analysis was performed using a TA-XT2 Texture 

Analyzer (Texture Technologies Corp., Scarsdale, NY) using the texture profile analysis 

measurement. About 10.0 g ofhydrated TSP (2.6 parts H20:l part TSP) were placed in 
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an aluminum cylinder (internal diameter = 27 mm, depth= 27 mm) and pressed to make a 

smooth surface. A smooth 13-mm plastic probe was used to determine 70% compression 

at a rate of 5 mm/sec. Samples were evaluated for hardness, springiness, cohesiveness and 

chewiness as described by Breene and Barker (4). Six texture analyses were performed 

for each sample. 

Preparation of TSP-extended ground beef Based on the residual oil content of TSP, 

coarse ground beef with different fat levels ( ~ 7% and ~ 19%) was blended with hydrated 

TSP to give a final product with 7% fat content. The mixture of ground beef and TSP 

was then ground through a 0.32 cm plate and held at 4 °C until used to make patties. 

TSP-extended ground beef patties were prepared by placing 48 g of25% TSP ground 

beef into a cylindrical mold and hand patting to a uniform thickness of 1.3 cm. The patties 

were held at -20° C until used for texture analysis. 

Texture analysis of TSP-extended ground beef Frozen patties were thawed at 4 °C for 24 

hr and then cooked at 185 °C for 3.5 min, :flipped, and allowed to cook for an additional 

2.5 min to an internal temperature of70 °C. The patties were allowed to cool to room 

temperature and a 25-mm core sample was taken from the center of each patty. Texture 
. . 

profile analysis was performed using a TA-XT2 Texture Analyzer (Texture Technologies 

Corp., Scarsdale, NY). A 38-mm anvil was used to determine 70% compressionat a rate 
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of 5 mm/sec. Samples were evaluated for hardness, springiness, cohesiveness and 

chewiness. Six texture analyses were performed for each sample. 

Cooking loss. Cooking loss was the gravimetric difference in weight between uncooked 

and cooked patties. Cooked patties were cooled to room temperature and blotted with a 

paper towel to remove excess surface fat and water. Weight differences were based on 

the sum of four patties and calculated as (uncooked weight- cooked weight)/uncooked 

weight. 

Sensory evaluation. Five partially defatted soy flour TSP-extended ground beef samples 
·, 

representing a wide range of PDI and residual oil contents were selected for human 

sensory analyses. Frozen patties were thawed at 4 °C for 24 hr and then cooked at 185 °C 

for 3.5 min, flipped, and allowed to cook for an additional 2.5 min to an internal 

temperature of70 °C. Patties were held at 60 °C and served within 15 min following. 

cooking. Ten students of the Department of Food Science and Human Nutrition were 

trained to evaluate hardness, cohesiveness, chewiness, soy flavor and overall flavor during 

two 1-hr training sessions with samples similar to those they were to evaluate. In 

addition, texture and flavor references were provided. Panelists were asked to evaluate 7 

different samples (5 partially defatted soy flour TSP-extended ground beef samples, 

commercial TSP control, 19% fat ground beef control) presented in duplicate. Samples .,,. 

were evaluated under red light on two separate sittings: 
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Experimental design Sample 45/8/1 (PDI/residual oil/times expelled) represents the 

midpoint of samples with regard to PDI value and residual oil content. The extrusion 

process conditions for texturization were optimized at this point based on instrumental 

textural comparison to the commercial TSP. All other samples were texturized under 

identical conditions with respect to moisture, temperature, screw speed, etc .. 

Statistical analysis. A randomized complete block design was used with each block 

replicated three times. In the third block, however, only eight of the ten treatments were 

measured because of insufficient sample. Statistical analyses were performed using the 

General Linear Model procedures of SAS 6.06 (SAS, 1991). Significance was established 

atP< 0.05. 

Results and Discussion 

Partially defatted soy flour characteristics. The properties of the partially defatted soy 

flours are summarized in Table 1. By design, the partially defatted soy flours chosen 

represented a wide range ofPDI value (35.4-69.1) and residual oil content (5.4-12.7%) 

with little variability in crude protein contents (49.3-52.4%). The pH of the partially 

defatted soy flours used in this study ranged from 6.5 to 6.7. The pH of the feed material 

affects the :fluidity of the dough in the extruder, and thus influences the shaping, density, 

chewiness and rehydration properties of the product (5,6). ·characteristics·ofraw 

materials, including source, previous handling or milling history, extraction conditions, and 

extrusion parameters may influence the functional properties of extrudates. These partially 
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defatted soy :flours were produced at maximum temperatures ranging from 86 to 162 °C. 

Three samples (35/6/2, 67/10/2, and 58/6/2) were twice-expelled and therefore were 

subjected to longer periods of thermal processing. Dahl and Villota (7) suggested that 

physico-chemical properties may be modified by excessively heated flour because of non-

uniform melting of carbohydrate fractions and intermolecular peptide cross-linking. 

Water-holding capacity and bulk density. Water-holding capacities and bulk densities of 

TSP produced from partially defatted soy flour are reported in Table 2. Residual oil was 

negatively correlated with water-holding capacity (R = - 0.473, P < 0.05; Fig 2). There 

were no significant differences in water-holding capacity for extrudates produced from 

low PDI ( < 55) versus high PDI (> 55) partially defatted soy :flour. These results are 

similar to those reported by Bhattacharya et al. (8) who observed water-holding capacity 

to decrease as lipid content increased, and Kearns et al. (9) who found no significant 

difference in the water-holding capacity of extrudates produced from flours with PDI . 

levels ranging from 20-70. Heating disrupts the quaternary structure of the 11 S soy 

protein and subsequently dissociates the subunits (10). These fractions initially form 

soluble aggregates that are converted to insoluble aggregates with continued heat 

treatment as evidenced by increased water-holding capacity with increasing PDI. This 

may be indicative of protein unfolding, which allows active amino acid R-groups to 

become exposed for binding water; With extended thermal processing (lower PDI), the 

production of insoluble aggregates is favored as noted by decreased water-holding 

capacity. 
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Water-holding capacity was negatively correlated with bulk density (R = - 0.474, P 

< 0.05; Fig 3). Similarly, Rhee et al. (11) reported an inverse relationship between water-

holding capacity and bulk density in extrudates produced from flours with a wide range of 

nitrogen solubilities. The lack of available water-binding sites makes these low-solubility 

or insoluble protein aggregates unable to incorporate sufficient water to develop proper 

dough consistency within the extruder barre_l. Upon release from the die the extrudate 

does not properly expand due to insufficient entrapped moisture as evidenced by 

decreased bulk density. The bulk density range of partially defatted soy flour extrudates 

was narrow 0.22 - 0.26 g/cm3, despite the relatively wide ranges of PDI values and 

residual oil contents. 

Extruder conditions. The extrusion of proteins is associated with dissipation of 

mechanical energy caused by increased dough viscosity and frictional effects. Extruder 

torque and pressure are indirect measurements of these effects (Table 3). The relatively 

high residual oil content of the partially defatted soy flour may have had protein 

plasticizing and lubricating effects, reducing protein interactions and attenuating extruder 

torque and pressure. Texturization of sample 35/6/2 resulted in the highest extruder 

torque and pressure levels. This sample, which was twice-expelled, was exposed to 

excessive thermal processing, as evidenced by a low PDI value (35.4). However, sample 

57 /8/1 showed no significant change in torque or pressure with single versus twice 

expelling. These samples (57/8/1 and 58/6/2) had higher PDI values (55.3 and 58.0, 

respectively) indicating less thermal treatment. In generai lower PDI samples (38/8/1, 
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35/6/2, 45/8/1) were associated with increased torque (Table 3). Keams et al. (9) also 

reported increased energy requirements for PDI values< 50. Mitchell and Areas (12) 

suggested that the presence of insoluble protein aggregates negatively affects flow 

behavior. However, Alcocer et al. (13) found that increasing flour lipid content resulted 

in decreased protein aggregation, ·resulting in less energy input in comparison to low lipid 

containing flours. Indeed, higher residual oil samples (71/13/1, 55/13/1, 40/12/1 and 

70/11/1) had significantly lower torque and pressure compared with other partially 

defatted soy flours (Table 3). 

Textural and sensory characteristics. TSP hardness was significantly reduced in high 

residual oil samples (71/13/1, 55/13/1, 40/12/1, 70/11/1) and in the twice-expelled sample 

67/10/2 (Table 4). The negative correlation between residual oil and all instrumental 

texture measurements indicates that the higher lipid contents of these samples may have 

inhibited protein interactions responsible for desirable extrudate textural attributes. Both 
. . 

Faubion et al. (14) and Bhattacharya et al. (8) found that removing lipids from flours 

favorably influenced TSP textural qualities, and Keams et al. (9) reported a maximum 

recommended fat level of 6.5% in raw materials. 

Neither PDI value nor residual oil content affected textural attributes measured in 

the TSP-extended ground beef system. In addition, no relationship was noted between 

texture measurements in the TSP-extended ground beef system versus the TSP alone. All 

hydrated TSP samples had decreased hardness compared with the commercial sample, 

however, this decrease was not significant in samples 38/8/1 (PDI 37.7) and 58/6/21 
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(twice-expelled) (Table 4). Texture attributes in nearly all samples in the TSP-extended 

ground beef system were comparable to the commercial sample (Table 5). In addition, 

despite the lower fat content (7% ), texture measurements of samples in the TSP-extended 

ground beef system were similar to those measured in the 19% fat ground beef control 

(Table 5). 

Results from human sensory evaluation of TSP-extended ground beef patties are 

presented in Table 7. No significant di:fferences·in hardness or chewiness were observed in 

the TSP-extended ground beef compared with the 19% fat control. As expected, soy 

flavor was significantly higher (P < 0.05) in the TSP-extended ground beef versus the 19% 

fat control. However, panelists judged overall flavor (like versus dislike) in most of the 

TSP-extended ground beef samples to be similar to the 19% fat control and the 

commercial sample. Sample 71/13/1, produced from high-lipoxygenase, partially defatted 

_ soy flour (data not shown) wasjudged to have the least desirable overall flavor. Residual 

oil content of partially defatted soy flour was strongly correlated with overall flavor (R = 

0.761, P < 0.05; Fig 4). In general, TSP from low-fat, partially defatted soy flour had less 

soy flavor and better overall flavor compared to TSP from high-fat partially defatted soy 

flour. 

Cooking loss. Eight of the ten samples produced from the partially defatted soy flours had 

cooking losses that were between the values for the 7% fat .control and the 19% fat 

control (Table 6). The remaining two samples, 45/8/1 and 57/8/1, did not have cooking 

losses significantly different from the 19% fat control. The cooking losses of most of the 
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• TSP-extended patties were less than reported by others for low-fat hamburger patties 

(15). Cooking losses for all samples were similar to those of the commercial TSP. 

Characteristics of TSP from partially defatted soy flours produced by E-E were 

significantly influenced by PDI value and residual oil contents. Residual oil content was · 

negatively correlated with instrumental texture analysis results and water-holding capacity. 

High PDI and low residual oil flours positively affected extruder performance as evidenced 

by significantly decreased torque and pressure values. Hydrated TSP arid TSP-extended 

ground beef texture characteristics were comparable to a commercial product. When 

incorporated into a low-fat (7%) TSP-extended ground beef system, most of the 

extrudates exhibited textural attributes similar to the high fat (19%) ground beef control, 

with reduced cooking loss. These results are surprising as all E-E partially defatted soy 

flours produced acceptable TSP, despite the relatively wide range of PD Is and residual oil 

contents. It is clear from these results that partially d~fatted soy flours produced by E-E 

have the functional characteristics necessary for extrusion-texturization of value-added 

products suitable for human food applications. 
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. Table 1. Compositional and Chemical Analyses of Extruded-Expelled Soybean 
Flour 

Sample 
Code0 

38/8/1 
35/6/2 

. 45/8/1 
67/10/2 . 
71/13/1 
55/13/1 
58/6/2 
57/8/1 
40/12/1 
70/11/1 

PDI 

37.7 
35.3. 
45.4 
67.2 
70.7 
55.3 
58.4 
57.3 
39.8 
70.4 

Residual Oil, 
%mfb 

7.7 
5.5 
7.7 
9.5 

12.7 
12.6 
5.5 
7.6 

11.5 
10.5 

0 Denotes PDI/residual oil content/times expelled. 

Times Expelled 

1 
2 
1 
2 
1 
1 
2 
1 
1 
1 

Crude Protein, 
%mfb 
51.3 
52.4 
50.9 
50.5 
49.1 
50.0 
52.0 
50.6 
49.3 
49.5 
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Table 2. Water-Holding Capacities and Bulk 
Densities of Texturized Soy Protein from 
Extruded-Expelled Soybean Floura 

Sample Code6 

38/8/1 
35/6/2 
45/8/1 
67/10/2 
71/13/1 
55/13/1 
58/6/2 
57/8/1 
40/12/1 
70/11/1 
ADM118 

Water-Holding 
Capacity,% 

364c 
335bc 
367c 
312ab . 
2933 

324b 
323b 
365c 
309ab 
339bc 
319ab 

Bulk Density, 
glee 

0.231 ah 
0.254b 
0.2293 

0.264b 
0.264b 
0.245ab 
0.264b 
0.2233 

. 0.255b 
0.236ab 
0.382c 

0 Means within each column with different superscripts 
are significantly differentat P<0.05. 

b Denotes POI/residual oil content/times expelled. 
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Table 3. Extruder Conditions During Texturization of 
Extruded-Expelled Soybean Floura 

Sample Code6 

38/8/1 
35/6/2 
45/8/1 
67/10/2 
71/13/1 
55/13/1 
58/6/2 
57/8/1 
40/12/1 
70/11/1 

Torquec 
30.0bc 
33.oc 
30.7bc 
26.7ab 
·25.oa 
26.0ab 
29.0b 
29.Qb 
26.0ab 
25.3ab 

Pressure, psi 
4706 
517c 
477b 
467b 
433a 
4373 

463b 
470b 
447ab 
437a 

0 Means within each column with the different superscripts are 
significantly different at P<0.05. 

h Denotes PDJ/residual oil content/times expelled. 
c Torque is given as % of maximum load of extruder drive motor. 
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Table 4. Texture Properties of Hydrated Texturized Soy Protein" 

Sample Code6 Hardness, Nc Springinessc Cohesivenessc Chewiness, Nc 
38/8/1 
35/6/2 
45/8/1 
67/10/2 
71/13/1 
55/13/1 
58/6/2 
57/8/1 
40/12/1 
70/11/1 
ADM118 

10.56c 
IO.Ob 
9.8b 
7.6a 
7.oa 
8.0ab 

10.6bc 
9.4h 
7.5a 
7.9a 

11.4c 

0.870ab 
0.870ab 
0.903b 
0.854ab 
0.863ab 
0.837a 
0.884ab 
0.884ab 
0.866ab 
0.859ab 
0.844a 

0.563a 
0.602b 
0.595b 
0.610b 
0.577ab 
0.573ab 
0.643c 
0.592b 
0.598b 
0.568ab 
0.566a 

a Means within each column with different superscripts are significantly different at P<0.05. 
h Denotes POI/residual oil content/times expelled. · 

5.16c 
5.2bc 
5,2hc 
3.9a 
3S 
3.9a 
6.oc 
4.9b 
4.0ab 
3.9a 
5.9c 

c Hardness and Chewiness values are given in Newtons; Springiness and Cohesiveness are unitless. 
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Table 5. Texture Properties of Texturized Soy Protein-Extended 
Hamburger Pattiesa 

Sample Code6 
38/8/1 
35/6/2 
45/8/1 
67/10/2 
71113/1 
55/13/1 
58/6/2 
57/8/1 
40/12/1 
70/11/1 
ADM118 
Control?% 
Control 19% 

Hardness, Nc 
112.9ab 
105.3ab 
123.7b 
96.la 

110.4ab 
131.8b 
105.8ab 
119.8b 
100.9a 
111.lab 
105.5ab 
127.7b 
98.8a 

Springinessc 
0.780ah 
0.779ab 
0.763ab 
0.763ab 
0.772ab 
0.773ab 
0.776ab 
0.792b 
0.7443 

0.795b 
0.800b 
0.772ab 
0.802b 

Cohesivenessc 
0.5393 

0.5433 

0.5393 

0.5583 

0.5713 

0.5293 

0.561 3 

0.5543 

0.5603 

0.5323 

0.5373 

0.4993 

0.5663 

0 Means within each column with different superscripts are significantly 
different at P<0.05. 

b Denotes PD I/residual oil content/times expelled. 
c Hardness and Chewiness values are given in Newtons; Springiness and 

Cohessiveness are unitless. 

Chewiness, Nc 
47.4ah 

.43.9ab 
50.9b 
40.73 

48.6b 
52.2b 
45_7ab 
52.5b 
42.la 
46.6ab 
45.3ab 
50.0b 
44.1 3 
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Table 6. Cooking Losses of Texturized 
Soy Protein-Extended Hamburger 
Pattiesa 

Sample Code6 

38/8/1 
35/6/2 
45/8/1 
67/10/2 
71/13/1 
55/13/1 
58/6/2 
57/8/1 
40/12/1 
70/11/1 
ADM118 
Control?% 
Control 19% 

Cooking Loss, % 
21.26 
22.3bc 
25.3cd 
21.7b 
22.8bc 
24.9cd 
21.7b 
24.lbcd 
21.9b 
22.7bc 
24.3bc 
19.3a 
28.2d 

a Means within the column with different 
superscripts are significantly different at 
P<0.05. 

b Denotes POI/residual oil content/times 
expelled. 
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. Table 7. Sensory Properties of Texturized Soy Protein-Extended Ground Beef 
Patties0 

Sample Codei; Hardness Cohesiveness Chewiness Soy Flavor Overall Flavor 
35/6/2 7.36 7.46 7.66 2.0ab 11.lab 
45/8/1 8.0b 7.2b 8.2b 5.0d 7.9b 
71/13/1 7.2b 5.8a 7.7b 8.7e 3.3c 
58/6/2 7.9b 6.8b 8.lb 3Jbc 9.8ab 
40/12/1 7.9b 7.3b 8.6b 4_7cd 8.3b 
ADM118 4.5a 5.5a 4.8a 4.4cd 9.lab 
19% Control 6.6ab 7.0b 8.7b 0.7a 11.7a . 

0 Means within each column with different superscripts are significantly different at P<0.05. 
b Denotes PDI/residual oil content/times expelled. 
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Fig. 1. Extrusion screw configuration and temperature profile. 
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CHAPTER 5. GENERAL CONCLUSIONS 

This study had two broad objectives: 1) to determine the range of soy flour 

properties possible by E-E processing of dehulled soybeans; and 2) to determine ifE-E 

partially defatted soy flour can be extruded to produce TSP. Both of these objectives 

were met with results fully described within the body of this work. 

For the first objective, partially defatted soy flours with·a wide range of residual oil 

contents and PDI, 4.7-12.7% and 12.5-69.1, respectively, were produced at a commercial 

facility (Iowa Soy Specialties, Vinton, IA) using extruder and expeller configurations 

which are easily replicated at other E-E mini-mills with little or no change in 

infrastructure. These flours had higher oil contents and lower PDI values than flours 

commonly utilized for producing of TSP. The publication of these data along with the E-

E parameters used to produce these partially defatted soy flours will benefit both food 

processors and scientists as there is currently almost no literature available regarding this 

subject. 

For the second objective, selected E-E partially defatted soy flours (n = 10) were 

successfully re-extruded to produce TSP. Although soybean flours and flakes are widely 

used in the production of TSP, the conditions necessary for extrusion-texturization ofE-E 

partially defatted soy flour have not been previously reported. In addition, because of the 

unique characteristics ofE-E partially defatted soy flour (e.g., high residual oil and low 

PDI), it was unknown whether texturization was feasible. Extrusion conditions for 

production of TSP were optimized for the median residual oil versus PDI partially defatted 

soy flour, and identical parameters were used to texturize the nine remaining partially 
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defatted soy flours. Texture characteristics of hydrated TSP from the E-E partially 

defatted soy flours were similar to those measured in a commercial product. When 

incorporated into a low-fat (7%) TSP-extended ground beef system, many of the • 

extrudates exhibited textural and flavor attributes similar to the higher fat (19%) ground 

beef control, with reduced cooking loss. These data indicate that TSP produced from E-E 

partially defatted soy flour has the functional and flavor characteristics necessary for use in 

human food applications. Production TSP from partially defatted soy flour for ti~ as 

meat extenders may provide an important market option for E-E mini-mil)s. 
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